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Surface plasmons studied by the method of recurrence 
relations 
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D e m e n t  of Physics, National University of Singapore, Kent Ridge, Singapore 051 I 

Received 19 Febnwy 1993. in h l  form 30 April 1993 

Abstract We smdy the plasma ascill5ions in a bite number of layem of a ZDEG. It is shown 
that by matching elecmagnetic boundary mnditim and solving the remmnce relahons for 
the coefficients of the electric pdennal in different regions. .a gened equatim cm be o w e d  
for the freguencies of all the plasmans under different types of surface dismnhuitv. N w e r i d  
results are shown for sir layers with non-identical smface charge layers. 

1. Inboduction 

The problem of surface plasmons occurring in a semiconductor superlattice system 
consisting of layers of two-dimensional electron gas (ZDEG) has been investigated by many 
authors theoretically. Different types of surface discontinuity (mismatch) have also been 
considered. Giuliani and Quinn [I] and Jain and Allen [ U ]  have studied the surface 
plasmons when there is a change in the dielecbic constants at the interface. Sy and Chua 
[5] have investigated the case when the surface layer has a different charge density, with 
no dielecbic change. And many authors [6-9] have considered the situation in which there 
are changes in both charge densities and dielectric constants. On the other hand, Bloss [lo] 
has also considered the surface modes when a superlattice is in contact with a semi-infinite 
doped overlayer. 

For a semi-infinite superlattice, the most straightfonuard theoretical approach is to 
consider the electric potential (or the equivalent hansverse and longitudinal elecbic fields) 
in each region, and to apply the electrodynamic boundary conditions. The unsurz [l] of a 
decaying mode is then used to obtain an equation for the surface mode. This approach has 
been used, for example, in [1,9] for a type-I system consisting of one kind of layers of 
ZDEG; in [S, 11,121 for t y p - U  superlattices, with two kinds of ZDEO layers in alternation: 
and also in [lo]. 

For finite systems, the usual method is to start with the density correlation function 
in RPA or equivalently the density perturbation in each layer. The coupled equations for 
these quantities, or their Folnier transforms, are then solved numerically L53.5-7,131. For 
finite systems with a single surface layer 151, or Enite systems with two identical surface 
layers [3,5,14], an explicit determinant equation whose zeros give the frequencies for all 
the modes can be derived. For more complicated types of surface or defect [61 discontinuity, 
and in particular for a finite system with non-identical surface layers, a simple determinant 
equation cannot be derived using this approach. 

In this paper we will use the method of electric potentials for a finite system. By using 
the elecuomagnetic boundary conditions in the non-retarded limit, we obtain recurrence 
relations for the coefficients of the potential in each region. By solving the recurrence 
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relations we obtain an equation for the frequencies, for all the plasmon modes, fa an 
arbitrary number of layers of ImEG and with quite general discontinuities. Some previous 
results in the literature are shown as special cases. Finally, as an application of our present 
approach, numerical results are obtained for a six-layer system, with two surface layers of 
different charge densities. 

2. Recurrence relations for plasmon problems 

We begin with the model of [15]. The system in figure 1 is made up of (N + 1) 2DEG layers 
at z = ja ,  j = 0, . . ., N. All layers have charge density n per unit area except that layer z 
= 0 has no and layer z = Nu has noo. The region between the layers has dielectric constant 
E and the regions outside have dielectric constant EO and em. 

0 

0 +: +: 
e o  +o+ Figure 1. A semimductor supehttice m h l  of N + I layers of ?om. 

This model describes the behaviour of a GaAs/(AIxGal-,)As superlaaice between two 
media of dielectric constants eo and €00. The doped GaAs layers are chosen to be very thin. 
The relatively thick Ai,Gal-,As (of thickness a) act as large potential barriers, so that the 
charge caniers move only in the GaAs layer as a two-dimensional electron gas. 'Tbnnelling 
is neglected and the electrons in different layers interact only by electromagnetic force. 

We will work in the non-retarded limit. This is valid provided that our wave vector 
k is larger than a,, (plasmon frequency)/c. This is valid for the typical k discussed in 
this problem, except for when k < lo3 cm-'. An extension to the calculation to include 
magnetic fields can be carried out, similar to those reponed in many previous works [16], 
but this will not be attempted here. 

We will only consider disturbance of the form ei(k'2-ar), where k and z are in the plane 
of the 2DEG. Then in the sourcefree dielecnic regions, the electric potential can be written 
as 

+ *[z-(m-l)ol + +-.i-*[z-(m-l)"l + = 
(1) 

(m - I)a 4 z <ma 

We wil l  suppress all the dependence on k and o. 

at z = ma, we have 

m = 1. ..., N. 

Using the electromagnetic boundary conditions in the non-retarded limit for Ell and DI 

t @;+, = +:e" t +;e-'a 
(2) [+;+l - +:,.,,I - [+;e-'' -&:e''] = (zvn/e)(+:e'a ++;e-'') 
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where v = 2rrez/k is the 2D transform of the Coulomb potential, and Il is the ZD 
polarizabiity, obtained in the long-wavelength limit as [14] 

(3) 

where y. = h(2nn)'/2/m and k << (hn)'/'. 
The 6rst boundary condition in (2) merely states the continuity of the transverse 

components of E. The second boundary condition is called the 'additional boundary' 
condition in the literature 1161. Its relatively simple form originates bom the ihitesimal 
thickness of the GaAs layers. For a more complicated shuchlre (e.g. with finite G A S  
layers), this second boundary condition has to be modified (see 1171 and articles in 1161). 

TX(k. w)  = (m/nh2)(o/ky./[(o/ky.)2- - 

Equation (2) can be written as 

=A@:+ B@; @;+, = B'@i +A'@; m = 1. ..., N - 1 (4) 
where A = (1 - F)ek", B = -Fe-'*, A' = (1 + F)e-", 8' = F& and F = vIl/c. By 
eliminating @; , we obtain the following linear recurrence relation of second ordec 

(5) 

Recurrence relations (5) and hence (4) can be solved using standard methods in terms 

@:+' - 2b&+,+,, +@: = 0 n = 0,. .., N - 2  

where b = coshka - Fsinhka. 

of @. @;: 

m = 1, _ _ _ ,  N - 1 

(6) 

= (1/sinB)[(Asinm0 - sin(m - I)@)@: + BsinmB@;] 
@;+, = (l/sin0)[B'sinmB@: + (A'sinmB - sin(m - I)8)@;] 

where cos B b when Ibl 6 1. When Ibl > 1, cosh A = Ibl, and sinme is replaced by 
(b/lbl) sinhmA. 

The recurrence relations of the form (4) have recently k e n  studied for single-eleclron 
wave functions in a semiconductor superlanice [IS] in the envelope-function approximation. 
By applying Bloch's condition in (5). we obtain the equation cosq ,~  = b for the bulk 
plasmon modes. 

3. Surface and extended modes for a general finite system 

To study a linite system with two surfaces (interfaces), we need to match @;, @; and 4:. 
@i with the potentials outside the superlattice. For this paper will take the regions outside 
to be sourc&ree with dielecaic constants EO(Z < 0) and E ~ ( Z  > Nu). The charge layers 
at z = 0 and Nu have density no and nOO. respectively. 

I 

The potentials outside the superlattice can be written as 
@=&e" z < O  

= @Nfle-kO-N4 z > Nu. 

4: + @; = @; 

(7) 

The boundary conditions at z = 0 give 

€(@; - @T) +eo@: = Zvno@; (8) 

(9) 

where no and nw are the polarizabilities at the two surface layers, obtained in (3) with no 
and nw, respectively. 

and boundary conditions at z = Nu give 

@;e'' + 4ie-k' = $i+I coo@;+, - e[+ie-k" -+:e""] = 2u1loo@i+~ 
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Eliminating @: from (8) we have 

Similarly, eliminating &+, from (9): 
@;/@; = qo = (E; + EFo)/ (E:  - EFo). 

(#;/@;)e”” = 000 = (EG + E F ~ ) / ( E &  - EFOO) 

E; = ( E  f E0)/2 

(10) 

(11) 

(12) 

where F~ = v n o i e ,  F~ = vnoo/c 
€2 = ( E  f E00)/2. 

Using equations (10)  and (11). together with the recurrence relation solutions (6), we 
have 
qoqw[(l+ F)e-”“sin(N - 1)0 - e-=”sin(N - 2 ) 8 ]  + Fe-”(qo + 000) sin(N - 1)e 

- ( 1  - F)eko  sin(^ - i)e +  sin(^ - 2)e  = 0. (13) 
Equation (13) gives the solution for the frequencies of all the plasmon modes in a h i t e  

system of N + 1 ZDEC layers with two interfaces. The two interfaces are characterized by 
qo and ow. 

Some special cases can be easily obtained. 
(I) An ( N  t 1 )  b i t e  system with no discontinuity, no = nw = n, EO = €00 = E and 

qo = qoo = F/(1 - F ) .  Equation (13) reduces to 
( 1  - F)e”sin(N + 1)0 - sin(N0) = 0. 

(U) A h i te  system with only a dielectric discontinuity [1,31, no = no0 = n and 
EO = EM # E .  Then qo = qoo = (E;  + E F ) / ( E $  - E F )  in equation (13). 

(111) A finite system with only a surface density change [51, no = nw # n ,  EO = COO = E .  
Then qo = 1100 = Fo/( l  - Fo). 

(IV) A finite system with both a dielectric and a charge discontinuity [6-91, no = no0 # 
n,  EO = €00 # E .  Then qo = qoo = (E;  + EFo)/ (E:  - ~ F o ) .  

(V) A semi-inhite system with both a dielectric and a charge discontinuity [6-91. This 
can be obtained f” equation (1 1) with qo = F/(1- F )  and using sinh(Ne)/sinh(N - 
1)0) -+ fey“ in the limit N -+ a. By writing ey”  = b+(b2 - 1)’p on obtains the equation 
for the surface plasmons as [6-91 

where acs = (em + E F ~ ) / ( E : ~  - <Fw)e-”4. 
(VI) The model of BIoss [lo]. When the region z > Na has a uniform charge density, 

we need to replace €00 by a frequencydeependent dielectric constant EOO(O) = COO( l-$& 

4. Numerical results and discussion for non-identical surface layers 

Numerical results have been achieved using (13) for the special cases mentioned in section 3, 
and they all agree with earlier results. Here, as an application of OUT present approach, we 
consider pcimarily the case in which qo # qm, as th is  case has not been studied in the 
literature. 

We will use the parameters for the GaAs/AIAs system in air, and EO = COO = 1, e = 10 
and m = 0.068 me. The other parameters needed are a = loo0 A, n = loi2 and N = 
5, so that the total number of layers is six. We will, however, allow the two surface charge 
densities no and no0 to vary. 

The experimental study of plasmons in semiconductor superlattices is usually carried 
out using inelastic light scattering [191 or Raman scattering [ZO]. While the observation 

f (bz - l)”sin(Rn) + b cosh(ka) + aeu.cr(b - cosh(ka))ek‘ = 1 (14)  
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of the extended discrete modas in the bulk band is well established, the observation of 
the Giuliani-Quinn surface modes [I], with no = no0 = n and €0 = €00 # E, remains 
elusive. One main rcason for this diffm#lty is the depletion of the surface layers, so that 
the actual surface densities no and no0 become much less than that in the underlying layers. 
An investigation of the plasmons in a 6nite system with varying surface densities no and 
nw is thus of current relevance. 

In figure 2, we have shown OUT results for no = 0.8 n and no0 = 1.2 n. The bulk 
boundaries are also shown as broken curves. As expected, there are six modes. Modes 
a and b rise above the bulk band after certain finite values of k. We will call these 
nominally the surface modes as the amplitudes are localized at the respective surfaces. In 
the limit N -t 03, these modes become the pure surface modes, with amplitude decaying 
exponentially away from the surfaces [91. 

Figure 2. The plasmon dispersion relation for six layers Figure 3. A hoite system of six layers with no = 0.4 n 
with no = 0.8 n and no0 = 1 2  n. and nw = 0.5 n. 

In figure 3, we have shown similar results for no = 0.4 n and nw = 0.5 n .  In thii case, 
the two lowest modes, e and f, become the surface plasmon modes below the bulk modes. 
Note that in the special case U of section 3 [1,31, no = nw = n surface modes below 
the bulk are not possible for GaAs/AIAs in air, E EO. In OUT m m  general model, this 
is possible because no and no0 are chosen to be less than n. In both figures 2 and 3, the 
surface modes become the plasmon modes for a single ZDEG for large k. 

For comparison, in figure 4 we have shown the results for identical surface layers, with 
no = nw = 0.8 n. In this situation, coupling between the two surface modes is strong 
for small  k, and gives rise to symmetric and antisymmetric combmations. For large k, the 
coupling is weak, and the surface modes are degenerate. 

The fabrication of GaAs/AIAs superhaices with selective surface doping should not 
present too much difficulty. Because of the depletion of surface charges, the effective 
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lo x m 

Figure 4. A bite system with identical surface layen no = nm = 0.8 n. 

surface densities will not be the original doping concenmtions. It is hoped that our results 
will stimulate more experimental work on the observation of surface plasmons. 
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