IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Surface plasmons studied by the method of recurrence relations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys.: Condens. Matter 5 6575
(http://iopscience.iop.org/0953-8984/5/36/012)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.159
The article was downloaded on 12/05/2010 at 14:23

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/36
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matter 5 (1993) 6575—6580. Printed in the UK

Surface plasmons studied by the method of recurrence
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Abstract. We study the plasma osciliations in a finite number of layers of a 2DEG. It i3 shown
that by matching electromagnetic boundary conditions and solving the recurrence relations for
the coefficients of the electric potential in different regions, a general equation can be obtained
for the frequencies of all the plasmons under different types of surface discontinuity. Nomerical
results are shown for six layers with non-identical surface charge layers.

1. Introduction

The problem of surface plasmons occurring in a semiconductor superlattice system
consisting of layers of two-dimensional electron gas (2DEG) has been investigated by many
authors theoretically. Different types of surface discontinuity (mismaich) have also been
considered. Giuliani and Quinn [1] and Jain and Allen [2-4] have studied the surface
plasmons when there is a change in the dieleciric constants at the interface. Sy and Chua
[5] have investigated the case when the surface layer has a different charge density, with
no dielectric change. And many authors [6-9] have considered the situation in which there
are changes in both charge densities and dielectric constants. On the other hand, Bloss [10]
has also considered the surface modes when a superlattice is in contact with a semi-infinite
doped overlayer.

For a semi-infinite supetlattice, the most straightforward theoretical approach is to
consider the electric poiential (or the equivalent transverse and longitudinal electric fields)
in each region, and 10 apply the electrodynamic boundary conditions. The agnsarz [1] of a
decaying mode is then used to obtain an equation for the surface mode. This approach has
been used, for example, in [1,9] for a type-I sysiem consisting of one kind of layers of
2DEG; in [8, 11,12] for type-1I superlattices, with two kinds of 2DEG layers in alternation;
and also in [10].

For finite systems, the usual method is to start with the density correlation function
in RPA or equivalently the density perturbation in each layer. The coupled equations for
these quantities, or their Fourier transforms, are then solved numerically {2, 3, 5-7, 13]. For
finite systems with a single surface layer [5], or finite systems with two identical surface
layers [3, 5, 14], an explicit determinant equation whose zeros give the frequencies for all
the modes can be derived. For more complicated types of surface or defect {6] discontinuity,
and in particular for a finite system with non-identical surface layers, a simple determinant
equation cannot be derived using this approach.

In this paper we will use the method of electric potentials for a finite system. By using
the elecromagnetic boundary conditions in the non-retarded limit, we obtain recurrence
relations for the coefficients of the potential in each region. By solving the recurrence
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relations we obtain an equation for the frequencies, for all the plasmon modes, for an
arbitrary number of layers of 2DEG and with guite peneral discontinuities. Some previous
results in the literature are shown as special cases. Finally, as an application of our present
approach, numerical results are obtained for a six-layer system, with two surface layers of
different charge densities.

2. Recurrence refafions for plasmon problems

We begin with the model of [15]. The system in figure 1 is made up of (N + 1) 2DEG iayers
atz = ja, j =0, ..., N. All layers have charge density n per unit area, except that layer z
= 0 has ny and layer z = Ng has ngy. The region between the layers has dielectric constant
¢ and the regions outside have dielectric constant ey and .
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Figure 1. A semiconductor superlattice model of ¥ + 1 layers of 2DEG.

This model describes the behaviour of a GaAs/(AL: Ga;_;)As superlattice between two
media of dielectric constants €5 and ego. The doped GaAs layers are chosen to be very thin.
The relatively thick Al,Ga;_,As (of thickness g) act as large potential barriers, so that the
charge carriers move only in the GaAs layer as a two-dimensional electron gas. Tunnelling
is neglected and the electrons in different layers interact only by electromagnetic force.

We will work in the non-retarded limit. This is valid provided that our wave vector
k is larger than wp (plasmon frequency)/c. This is valid for the typical & discussed in
this problem, except for when & < 10° cm~!. An extension to the calculation to include
magnetic fields can be carried out, similar to those reported in many previous works [16],
but this will not be attempted here.

We will only consider disturbance of the form €=~ where k and = are in the plane
of the 2DEG. Then in the source-free dicleciric regions, the electric potential can be writien
as

¢ - ¢;;ek[z-(m—-1}a] 4 ¢;i—k[z—(m—l)a]

)

(m—1a<z<ma m=1,...,N.

We will suppress all the dependence on & and o.

Using the electromagnetic boundary conditions in the non-retarded Limit for £y and D
at z = ma, we have

Bhy + by = 5 + e

[€71 = €] = [ome™ — o] = o) (k" + ge7™) ®
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where v = 2me?/k is the 2D transform of the Coulomb potential, and T1 is the 2D
polarizability, obtained in the long-wavelength limit as [14]

(k. ) = (m/xt) |/ kve /[ (o] kor)” ~ 1] - 1] 3)

where vg = A(27n) /2 /m and k < (2rn)'72,

The first boundary condition in (2) merely siates the continuity of the transverse
components of E. The second boundary condition is called the ‘additional boundary’
condition in the literature [16]. Its relatively simple form originates from the infinitesimal
thickness of the GaAs layers. For a more complicated structure (e.g. with finite GaAs
layers), this second boundary condition has to be modified (see [17] and articles in [16]).

Equation (2} can be written as
Gro = Ad) + BY, b1 =B+ A9, m=1,..N-1 @
where A = (1 — F)e!*, B = —Fe % A' = (1 + F)e™%, B' = Fe!? and F = vIl/e. By
eliminating ¢, we obtain the following linear recurrence relation of second order:

:+2—2b L +ei=0 n=0,...,.N-2 6]
where b = cosh ke — F sinhka.

Recurrence relations (5) and hence (4) can be solved using standard methods in terms
of ¢/, ¢;:
¢y = (1/sin 9)[(A sinm@ — sin(m — 1)6)¢; + B sinméqbl“]

iy = (1/sin@)[ B’ sinm0g; + (A’ sinmd — sin(m — 1)8)¢; |
) 6
where cos @ = b when |b| < 1. When [b} > 1, cosh A = |b|, and sinm#@ is replaced by
(b/|b|) sinh mA.

The recurrence relations of the form (4) have recently been studied for single-electron

wave functions in a semiconductor superlattice [18] in the envelope-function approximation.

By applying Bloch’s condition in (5), we obtain the equation cosg.a = b for the bulk
plasmon modes.

3. Surface and extended modes for a general fimite system

To study a finite system with two surfaces (interfaces), we need to match ¢;, ¢, and ¢,
¢y with the potentials outside the superlattice. For this paper will take the regions outside
to be source-free with dielectric constants €p{z < 0) and €x(z > Na). The charge layers
at z = () and Na have density ng and ngo, respectively.

The potentials outside the superlattice can be written as

= qbg’ek’ z<0
- —k(z—Ng) (T)
= Py, z> Na.
The boundary conditions at z = 0 give
¢T+¢7 =d7 (¢ — o) +eody = 2vTlody ®
and boundary conditions at z = Na give
B e = By ety —€[de™ — ot | = 2uTTngi., ®

where [To and gy are the polarizabilities at the two surface layers, obtained in (3) with ag
and ngg, respectively.
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Eliminating ¢; from (8) we have

o7 /67 =no= (&5 +eF)/(ef — €Fo). (10)
Similarly, eliminating ¢, from (9):
(8% /8y)e™ = noo = {egg + € F) /(€50 — € Foo) (11
where Fy = vy /e, Foy = vllgo/e
& = (e e0)/2 € = (€ £ €) /2. (12)

Using equations (10} and (11), together with the recurrence relation solutions (4), we
have

noneo[ (1 + Fe™* sin(N — 1)8 — e 2% sin(N — 2)8] + Fe™* (o + o) sin(N — 1)8
~ (1 - F)e* sin(N — D)8 + sin(N ~ 2)6 =0. (13)

Equation (13) gives the solution for the frequencies of all the plasmon modes in a finite
system of N + 1 2DEG layers with two interfaces. The two interfaces are characterized by
1o and neo.

Some special cases can be easily obtained.

(I} An (N + 1) finite system with no discontinuity, ny = nyg = H, € = €y = € and

no = nop = F/(1 — F). Equation (13) reduces o
(1 — F)e* sin(N + 1)8 — sin(N6) = 0.

(I} A finite system with only a dielectric discontinuity [1,3], ng = ngo = n and
€0 = €00 % €. Then ng = noy = (&5 + €F)/(¢5 — €F) in equation (13).

(X} A finite system with only a surface density change [5], ng = noo # n, €0 = €00 = €.
Then no = oo = Fo/(1 — Fo).

(IV) A finite system with both a dieleciric and a charge discontinuity [6-91, no = noo #
n, € = €gg 7 €. Then ng = ngp = (5 + €Fo) /(65 — € Fy).

(V) A semi-infinite system with both a dielectric and a charge discontinuity [6-9]. This
can be obtained from equation (11) with ny = F/(1 — F) and using sinh(N&)/sinh(N —
1)) —> e?? in the limit N — «. By writing e"® = b+ (b* — 1)'/2 on obtains the equation
for the surface plasmons as [6-9]

* (5% — 1) sin(ka) + b cosh(ka) + aer (b — cosh(ka))e®® = 1 (14)

where a.r = (€0 + € Fop) /(€ — € Fo)e 4.
(VI} The model of Bloss [10]. When the region z > Ng has a uniform charge density,
we need to replace ego by a frequency-dependent dielectric constant ego(ew) = €go(1— g,/col).

4. Numerical results and discussion for non-identical surface layers

Numerical results have been achieved using (13) for the special cases mentioned in section 3,
and they all agree with earlier results. Here, as an application of our present approach, we
consider primarily the case in which ny # ne, as this case has not been studied in the
literature.

We will use the parameters for the GaAs/AlAs system in air, and eg = eggp =1, € = 10
and m = 0.068 m.. The other parameters needed are a = 1000 A, n = 102 cm™2 and N =
5, so that the total number of layers is six. We will, however, allow the two surface charge
densities ng and ngp to vary.

The experimental study of plasmons in serniconductor superlattices is usually carried
out using inelastic light scattering [19] or Raman scattering [20]. While the observation



Surface plasmons studied by recurrence 6579

of the extended discrete modes in the bulk band is well established, the observation of
the Giuliani—-Quinn surface modes [1], with ng = nee = n and €y = €y # €, remains
elusive, One main rcason for this difficulty is the depletion of the surface layers, so that
the actual surface densities no and ngo become much less than that in the underlying layers.
An investigation of the plasmons in a finite system with varying surface densities np and
ngo is thus of current relevance.

In figure 2, we have shown our results for ny = 0.8 n and ngy = 1.2 n. The bulk
boundarics are also shown as broken curves. As expected, there are six modes. Modes
a and b rise above the bulk band after certain finite values of . We will call these
nominafly the surface modes as the amplitudes are localized at the respective surfaces. In
the limit N — oo, these modes become the pure surface modes, with amplitude decaying
exponentially away from the surfaces [9].
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Figure 2. The plasmon dispersion relation for six layers  Figure 3. A finite system of six layers with no =045
with np = 0.8z and mgo = 1.2 1. and oo = 0.5 n. -

In figure 3, we have shown simitar resuits for 7o = 0.4 r and g = 0.5 n. In this case,
the two lowest modes, e and f, become the surface plasmon modes below the bulk modes.
Note that in the special case II of section 3 [1,3], np = npp = n surface modes below
the bulk are not possible for GaAs/AIAs in air, € > €. In our more general model, this
is possible because ny and noy are chosen to be less than n, In both Ggures 2 and 3, the
surface modes become the plasmon modes for a single 2DEG for large k.

For comparison, in figure 4 we have shown the results for identical surface layers, with
ny = ngg = 0.8 n. In this sitwation, coupling between the two surface modes is strong
for small &, and gives rise to symmetric and antisymmetric combinations. For large &, the
coupling is weak, and the surface modes are degenerate.

The fabrication of GaAs/AlAs superlattices with selective surface doping should not
present too much difficufty. Because of the depletion of surface charges, the effective
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Figure 4. A finite system with identical surface layers mg = ngo = 0.3 1.

surface densities will not be the original doping concentrations. It is hoped that our results
will stimulate more experimental work on the observation of surface plasmons.
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